Осторожно — «энергосберегатели»!

Осторожно — «энергосберегатели»!

Осторожно — «энергосберегатели»!

На электротехническом рынке стали появляться странные изделия. При малых габаритах и сравнительно небольшой цене они, по заверениям продавцов, имеют гигантскую эффективность: с их помощью можно якобы снижать электропотребление от 5 до 60 процентов.
В рекламных материалах описаны принцип действия, схемы подключения, методика подтверждения работоспособности, приводятся таблицы эффективности. Указаны объекты, где они используются, с указанием экономии по каждому из них. Изделия имеют сертификаты соответствия различных стран, в том числе России, Украины, Казахстана, Турции.
На рынке циркулирует ряд торговых марок таких изделий, в том числе: EkoEnerji (Турция), SmartBoy, Electricity-Saving Box, Electricity Energy Electric Power Saver, «Эконометр» — все производства КНР, а также другие. Желающие могут ознакомиться, в частности, с обширным списком предложений по адресу: http://www.tradekey.com/ks-electricpower saver.
Независимо от особенностей внешнего вида, торгового наименования, страны происхождения и некоторых различий в описании принципа работы все изделия имеют общие признаки.
Во-первых, это указанная эффективность.
Во-вторых, схема подключения: параллельно нагрузке после электросчетчика в непосредственной близости от него.
В-третьих, «честно» указывается, что приборы эффективны только на объектах с большой индуктивной нагрузкой.

Что должно сразу насторожить потенциального покупателя?
Прежде всего — огромный процент обещаемой экономии. Есть еще одно настораживающее обстоятельство. Не секрет, что в настоящее время в каждой наукоемкой подотрасли есть несколько известных мировых лидеров с мощными исследовательскими и конструкторскими подразделениями, которые разрабатывают новинки, сразу идущие на испытания, в опытную эксплуатацию и затем на рынок. Если вне этих структур и появляется действительно эффективная разработка, она тут же скупается теми же фирмами, причем за такие деньги, от которых невозможно отказаться. Поэтому все принципиально новые наукоемкие продукты могут появиться только у них, и если о прорывной новинке заявляет некая фирма, не входящая в число мировых лидеров, это должно сразу вызвать вопросы. Настороженность должна вызывать и схема продаж через эксклюзивных дистрибьюторов. Авторитетные зарубежные производители электротехнической продукции предпочитают использовать более выгодную для себя и эффективную схему — через свои представительства, которые напрямую работают с региональными дилерами и крупными потребителями, обеспечивают необходимую информационную, научно техническую и инженерно методическую поддержку продвижения продукции, работают, в первую очередь, с проектными организациями, бесплатно снабжая их каталогами и методиками проектирования объектов с применением предлагаемых изделий.
Для понимания других обстоятельств нужны специальные знания. Например, если судить по материалам сайтов, эффективность прибора продавцы подтверждают замерами тока в сети (без прибора и после его подключения), а не потребляемой электроэнергии или активной мощности. Но специалист знает, что при изменении коэффициента мощности полный ток в сети может уменьшаться, а электропотребление — нет.
Иные продавцы утверждают, что приборы якобы преобразуют реактивную энергию, за которую потребитель, как известно, не платит, в активную. А поскольку это происходит после счетчика, то все «абсолютно легально». Но специалист знает, что, в отличие от активной энергии, которая, в конечном итоге, расходуется, превращаясь в другие виды энергии, реактивная энергия необходима для создания электромагнитных полей в индуктивностях и емкостях и в других превращениях не участвует. Поэтому нельзя преобразовать то, чего нет, в то, что есть.
Есть и подмены понятий: так, в рекламных таблицах эффективности активная мощность иногда подменяется полной. А при попытке задать хотя бы один вопрос по устройству и принципу работы следует либо глухое молчание, либо ответ, что они «наукой не занимаются», либо ссылка на «ноу-хау», либо некий набор слов, абсурдный с точки зрения специалиста.
Есть и просто небылицы. Так, одни продавцы утверждают, что предлагаемые изделия реагируют на фазовый сдвиг между током и напряжением сети, но конструкция прибора и способ его подключения таковы, что ток сети просто не может в него попасть, не говоря о полном отсутствии в приборе датчиков тока, без которых фазовый сдвиг в принципе не может быть определен. Другие убеждают покупателей, что в их изделии работают управляемые электронные ключи, которые переключают реактивную мощность между фазами нагрузки, и она циркулирует внутри, не выходя в сеть. Их не смущает, что реактивный ток чисто физически не может «переключаться» между фазами симметричной нагрузки, что имеет место в подавляющем большинстве трехфазных электроприемников. Третьи заявляют, что их товар предотвращает осаждение на проводниках оксида углерода, то есть угарного газа, который якобы образуется при скачках нагрузки в сети, хотя ученым-химикам такое явление неизвестно.

Что же в действительности могут представлять собой предлагаемые изделия?
Большинство продавцов не приводят в промо-материалах схемы устройств, и, кроме того, нет полной гарантии, что приведенные схемы, как и публикуемые продавцами результаты применения их товара, соответствуют действительности.
На одно изделие — Electricity Saving Box — схему удалось найти (http:// www. s i l i c o n c h i p . c o m . a u / c m s / A _ 109592/article.html). Судя по ней, это не более чем пассивное фильтрокомпенсирующее устройство на базе двух конденсаторов, один из которых включен в сеть через простейший неуправляемый выпрямитель. Судя по представленной информации, компенсирующая мощность модели мощностью 15 кВт составляет 94 ВАр. В то же время, в описании этого устройства приведена осциллограмма тока, из которой следует, что в устройстве присутствует и некий источник высших гармоник, но на принципиальной схеме его обнаружить не удалось.
Для более полного выяснения истинного положения дел была произведена контрольная закупка двух изделий EkoEnerji — однофазных моделей 25 кВт (фото 1) и 40 кВт (фото 2) — с целью проведения комплексных испытаний. В измерениях использовались мультиметры MY 65 и RapportII, вольтметры M838 и MS8211, осциллограф С1 49, лабораторный электродинамический ваттметр Д5104 класса точности 0,1 с токовым шунтом. Во время измерений напряжение питающей сети изменялось в пределах 227–234 В, что обусловило соответственные изменения измеренных значений токов.
В первую очередь, были измерены токи включенных в сеть испытуемых устройств, которые составили: 25 кВт — 0,64...0,66 А, 40 кВт — 1,78... 1,81 А. Затем была собрана испытательная схема, в которой параллельно испытуемому изделию подключалась активная или активно индуктивная нагрузка. Измерялись: общий ток в схеме (I1), ток испытуемого устройства (I2) и ток нагрузки (I3). На основании измерений, с учетом погрешностей, были построены векторные диаграммы токов для каждого варианта испытательной схемы (фото 3 а-д). На основе векторных диаграмм с чисто активной нагрузкой был сделан вывод, что первые гармоники токов обоих устройств сдвинуты по фазе на 90° относительно напряжения сети, а векторные диаграммы с активно-индуктивной нагрузкой дополнительно показали, что эти токи имеют емкостный характер. Кроме того, измерения с различными нагрузками подтвердили, что при неизменном напряжении на зажимах устройств нагрузка сети не влияет ни на величину, ни на характер их тока. Таким образом, был сделан первый существенный вывод: исследуемые устройства могут выполнять функцию нерегулируемых статических устройств компенсации реактивной мощности, но их фактическая компенсирующая мощность весьма далека от паспортной: для устройства 25 кВт она составила 140 ВАр, а для устройства 40 кВт — 400 ВАр.

Фото 2 Затем была исследована форма кривой тока устройств. Было установлено, что она практически не зависит от величины и характера нагрузки, подключенной паралельно устройству; характерный вид ее представлен на фото 4. На осциллограммах явственно видны импульсные модуляции тока: более сильные большой скважности — частотой около 300 Гц и с меньшей амплитудой, но в течение всего периода основной частоты — на частоте около 5 кГц. Характер модуляций позволяет полагать, что их источник — процессы коммутации тока полупроводниковыми элементами, входящими в состав устройств.
Математический анализ гармонического состава кривой тока показал, что по эмиссии высших гармоник испытуемые устройства отвечают требованиям ГОСТ Р 51317.3.2 2006 для технических средств класса D, но генерация высших гармоник на частоте, близкой к 5 кГц, достаточно заметна и составляет 10—20% первой гармоники тока устройства. Также в экспериментах не было выявлено заметного влияния испытуемых устройств на подавление высших гармоник, генерируемых в сеть другими нагрузками: газоразрядными лампами и коллекторными электродвигателями.
Следующий этап испытаний — определение влияния исследуемых устройств на потребление активной мощности параллельно включенной нагрузкой. Измерения проводились с помощью ваттметра для активных и активно индуктивных нагрузок различного состава и номинальной мощности: вначале — без испытуемых устройств затем — с поочередно включаемыми указанными устройствами. Результаты измерений, приведенные к напряжению на входе испытательной схемы 230 В, сведены в таблицу.

Из таблицы видно, что снижение потребляемой мощности при включенных устройствах имело место только для электроинструмента. Наибольшее снижение — чуть более 4 процентов — наблюдалось при совместной работе устройства 40 кВт и электроперфоратора 1100 Вт. Однако это нельзя считать подлинной экономией электроэнергии, так как оно вызвано снижением не потерь в электродвигателе, а полезной мощности на его валу вследствие, как будет показано ниже, уменьшения рабочего магнитного потока из-за расширения рабочей петли гистерезиса под действием импульсных модуляций тока. Потери же в обмотках и в магнитной системе электродвигателя вследствие действия высших гармоник тока, напротив, возрастают, то есть его к.п.д. снижается.

Во всех остальных вариантах испытательной схемы при подключении «энергосберегателей» фиксировалось увеличение потребляемой мощности. Наибольшее — почти на 30 процентов(!) — наблюдалось при совместной работе устройства 40 кВт и маломощного асинхронного электродвигателя с экранированными полюсами (настольный вентилятор). Почти столь же существенный рост — почти 20 процентов — наблюдался при совместной работе устройства 40 кВт и светильника с люминесцентной лампой 11 Вт и балластным дросселем. Это говорит о том, что высшие гармоники тока, генерируемые «энергосберегателями», растекаясь по другим нагрузкам, существенно увеличивают потери активной мощности в магнитопроводах. Таким образом, никакого реального энергосберегающего эффекта от применения «энергосберегателей», как и предполагалось, не обнаружено.
Однако, оставалось непонятным: почему в целом ряде случаев применение «энергосберегателей» действительно приводит к уменьшению учета электропотребления и почему это явление наблюдается отнюдь не всегда даже в «рекомендованных» продавцами этих устройств случаях? Для поиска ответа на этот вопрос обратимся к теории процессов в магнитных цепях на переменном токе.
Как известно, в ферромагнетиках, находящихся в переменном магнитном поле, имеет место магнитный гистерезис, приводящий, в частности, к отставанию изменения магнитного потока от соответствующего изменения порождающего его тока; при этом для конкретного магнитопровода каждому значению амплитуды напряженности внешнего переменного магнитного поля соответствует своя петля гистерезиса и, соответственно, свой фазовый угол, на который первая гармоника магнитного потока отстает от первой гармоники тока.
№пп Используемая нагрузка Вариант испытательной схемы Потребляемая мощностьВт разница в %
1.1 Лампа накаливания 60 Вт без устройств 61,0 0
1.2 с устройством 25 кВт 61,0 0
1.3 с устройством 40 кВт 66,3 +8,6
2.1 Электрокамин 500 Вт без устройств 496,5 0
2.2 с устройством 25 кВт 498,0 +0,3
2.3 с устройством 40 кВт 503,8 +1,5
3.1 Светильник с люминесцентной лампой 11 Вт без устройств 17,7 0
3.2 с устройством 25 кВт 19,4 +9,6
3.3 с устройством 40 кВт 21,2 +19,8
4.1 Вентилятор настольный без устройств 24,6 0
4.2 с устройством 25 кВт 29,9 +21,5
4.3 с устройством 40 кВт 31,7 +28,9
5.1 Электроперфоратор 1100 Вт на холостом ходу без устройств 556,1 0
5.2 с устройством 25 кВт 541,2 -2,7
5.3 с устройством 40 кВт 532,4 -4,3
6.1 Электроперфоратор 1100 Вт и углошлифовальная машина 1000 Вт
на холостом ходу без устройств 1006,4 0
6.2 с устройством 25 кВт 983,7 -2,3
6.3 с устройством 40 кВт 970,3 -3,6
7.1 Электроперфоратор 1100 Вт и углошлифовальная машина 1000 Вт на холостом ходу
+электрокамин 500 Вт без устройств 1544,7 0
7.2 с устройством 25 кВт 1537,9 -0,4
7.3 с устройством 40 кВт 1514,0 -2,0
8.1 Без нагрузки с устройством 25 кВт 0
8.2 с устройством 40 кВт 0
В большинстве счетчиков электроэнергии, находящихся в настоящее время в эксплуатации — как электромеханических, так и электронных — применяются индуктивные датчики тока, которые формируют магнитный поток, пропорциональный учитываемому току. Эти счетчики сконструированы и отрегулированы так, что их погрешность находится в пределах класса точности, если ширина петли гистерезиса и, соответственно, угол сдвига магнитного потока токового датчика относительно учитываемого тока не выходит за пределы некоторого диапазона, диктуемого номинальными параметрами счетчика и особенностями его конструкции.
Если в токе нагрузки, протекающем через счетчик, присутствуют достаточно мощные импульсы, несимметричные относительно кривой первой гармоники тока и совпадающие по знаку с ее соответствующей полуволной, то магнитопровод воспринимает их как подмагничивающие и переходит на более широкую петлю гистерезиса, что приводит к увеличению угла отставания первой гармоники магнитного потока датчика от первой же гармоники протекающего по нему тока. Дальнейшая измерительная схема счетчика воспринимает это как увеличение отставания тока нагрузки от напряжения сети, то есть — как уменьшение активной составляющей этого тока и, соответственно, учитываемой активной мощности. Таким о